Some Estimators of the Dispersion Parameter of a Chi-distributed Radial Error with Applications to Target Analysis
نویسندگان
چکیده
The dispersion parameter of a chi-distributed radial error is of interest in numerous target analysis problems as a measure of weapon-system accuracy, and it is often of practical importance to estimate it. This paper presents a few classical estimators including the maximum likelihood estimator, an unbiased estimator and a minimum mean squared error estimator of this dispersion for both when the origin or “center of impact” is known or can be assumed as known and when it is unknown. Some families of shrinkage estimators have also been suggested when a prior point estimate of the dispersion parameter is available in addition to sample information. The estimators of circular error probable and spherical error probable have been obtained as well. A simulation study has been carried out to demonstrate the performance of the proposed estimators. Zusammenfassung: Der Dispersionsparameter eines chi-verteilten radialen Fehlers ist bei Zielanalysen als Maß für die Genauigkeit eines Waffensystems von Interesse. Daher ist es häufig von praktischer Relevanz, diesen Parameter zu schätzen. Wir präsentieren klassische Schätzer wie den MaximumLikelihood Schätzer, einen unverzerrten Schätzer, und den minimalen mittleren quadratischen Fehler Schätzer für diese Dispersion. Die Schätzer werden für die Situation betrachtet wenn der Nullpunkt, das Einschusszentrum, bekannt ist oder dies angenommen wird und wenn er unbekannt ist. Familien von Shrinkage-Schätzern werden auch vorgeschlagen, falls zusätzlich zur Stichprobeninformation noch eine vorweg Information über die Dispersion verfügbar ist. Wir erhalten Schätzungen für den kreisförmigen und den kugelfgörmigen mutmaßlichen Fehler. Eine Simulationsstudie wird durchgeführt um die Güte der vorgeschlagenen Schätzer zu demonstrieren.
منابع مشابه
Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملPitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution
In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...
متن کاملMinimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions
This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...
متن کاملA Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملAdmissible and Minimax Estimator of the Parameter $theta$ in a Binomial $Bin( n ,theta)$ distribution under Squared Log Error Loss Function in a Lower Bounded Parameter Space
Extended Abstract. The study of truncated parameter space in general is of interest for the following reasons: 1.They often occur in practice. In many cases certain parameter values can be excluded from the parameter space. Nearly all problems in practice have a truncated parameter space and it is most impossible to argue in practice that a parameter is not bounded. In truncated parameter...
متن کامل